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Abstract

A theoretical study is executed to investigate the simultaneous influences of reduction in heat transfer rate on account of condensation
in presence of non-condensables and its augmentation by the geometry of an horizontal tube surface with increasing radius of curvature
in the direction of gravity. The tube surface profile considered for the present work is an equiangular spiral described in a polar form as:
R = aemh (a and m being parametric constants). It is observed that a very small bulk concentration (even less than 1%) of the non-con-
densable gas reduces considerably the heat transfer coefficient. However, there is an enhancement in heat transfer coefficient for conden-
sation over a polar tube surface, as compared to that over a circular tube surface. This enhancement in heat transfer coefficient, with an
increase in the value of m (a surface profile parameter), in presence of non-condensables is more than the corresponding proportional
enhancement in the same in absence of any non-condensable species.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon of condensation on outer and inner
surface of horizontal tubes is largely associated with vari-
ous fields of engineering such as thermal power plant,
refrigeration, air conditioning and many chemical process-
ing industries. Most of the condensers for commercial pur-
poses use circular tubes carrying cooling water through
them. The two important aspects that play prominent role
in the condensation heat transfer rate are tube geometry
and presence of non-condensable gases in the vapour.

A pioneering work in the field of condensation heat
transfer is due Nusselt [1], who predicted the heat transfer
coefficient in film condensation over horizontal circular
tubes, from a simplified theoretical analysis. Several works
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on [2–8] laminar film condensation over non-circular tubes
have been reported subsequently, following Nusselt�s basic
theory. These studies have basically originated out of a
motivation to investigate the role of tube surface geometry
in enhancing the rate of heat transfer during condensation.
In a very recent work, Dutta et al. [9] established the fact
that a considerable augmentation in heat transfer coeffi-
cient takes place for condensation over non-circular tubes
with progressively increasing radius of curvature in the
direction of gravity, as compared to that over a conven-
tional circular tube. This has been attributed to a combined
effect of gravity force component and surface tension
driven pressure gradient in the flow of liquid film along
the solid surface.

In many practical situations, condensable vapours con-
tain certain non-condensable gases. It is well known that
the non-condensable gases drastically reduce the condensa-
tion heat transfer rate due to their presence even by a very
minute amount. In such situations, concentration and
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Nomenclature

a parametric constant of polar curve Rp = aemh

C mass fraction of vapour
D mass diffusivity
cp specific heat of condensate at mean film temper-

ature
g acceleration due to gravity
hfg latent heat due to condensation
Ja Jacob number,

cpðT si�TwÞ
hfg

k thermal conductivity of condensate at mean film
temperature

L length of semi-perimeter of any polar curve
m parametric constant of polar curve Rp = aemh

_mc mass flux of condensate
Nr non-dimensional surface tension force, r

q�qvð ÞgR2

Pr pressure due to surface tension
P perimeter of the tube surface
Q condensate volume flow rate per unit width of

the surface
R radius of an equivalent circle having same

surface area to that of the polar curve
Rp radius vector of polar curve
Rc radius of curvature
r radial coordinate
Ra Rayleigh number,

qðq�qvÞgð2RÞ3cp
lk

Sp semi-perimeter of the tube surface
T temperature
Tw wall temperatures
Vsi condensate velocity along tangential direction of

the tube surface

Greek symbols

a thermal diffusivity
b angle between tangent and direction due to

gravity at any point on tube surface
d liquid film thickness
h polar angle
q density of condensate at mean film temperature
qv density of vapour
l dynamic viscosity of condensate at mean film

temperature
r surface tension coefficient

Subscripts

x1 tangential direction along the tube surface
y1 normal direction at any point to the tube surface
v vapour phase
1 at free stream
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temperature gradients are set up with combined heat and
mass transport processes in the vapour–gas mixture. A
number of analytical and semi-analytical investigations
[10–13] has been executed in the literature on this issue,
referring mostly to the condensation on vertical flat sur-
faces. These studies have pointed out that a substantial
reduction in condensation heat transfer coefficient due to
presence of non-condensable species is likely to occur. In
some of these works, a simplification has been made by lo-
cally replacing the saturation temperature of the vapour in
Nusselt�s equation with interface temperature of the mix-
ture, as solved from the momentum, heat and species con-
servation equations. However, studies on condensation
over a curved surface in presence of non-condensables have
received only a little attention in the literature.

Major aim of the present work is to investigate the
simultaneous influences of reduction of heat transfer rate
due to presence of non-condensables and its augmentation
by the geometry of the tube surface with increasing radius
of curvature in the direction of gravity. This is mathemat-
ically achieved by obtaining the evolution of film thickness
in an iterative manner, from a coupled solution of momen-
tum, heat and species conservation equation, in conjunc-
tion with matching interfacial constraints and boundary
conditions. This is in sharp contrast with some of the ear-
lier approaches, in which validity of a classical form of
Nusselt�s equation has been implicitly presumed, even in
the presence of non-condensables. Based on the mathemat-
ical analysis, the rate of condensation heat transfer rate is
predicted, in order to quantitatively assess the role of the
tube geometry in arresting the reduction of rate of heat
transfer on account of presence of non-condensables in
the system.

2. Mathematical modeling

A central theme of the present work is to investigate the
effects of non-condensables on condensation heat transfer
on a tube surface, which is having a profile such that its ra-
dius of curvature increases in the direction of gravity. The
geometric profile chosen for this purpose is given by the
polar equation of an equiangular spiral as: Rp = aemh,
which is generated symmetrically about its vertical axis.
However, the entire symmetrical half of the polar curve
(Fig. 1(a)) cannot be taken to model the tube surface, since
there exists an upward sloping portion in which the conden-
sate cannot flow with the aid of gravity. If the polar angle h
is measured with respect to the central vertical axis, with a
positive sense in the clockwise direction, the above zone
of upward facing slope is confined within a region given
by: 0 6 h 6 tan�1m (the portion AB shown in Fig. 1(b)).
It can be noted here that m = 0 corresponds to the special
case of a circular cylinder, which does not contain any up-
ward sloping portion at all. This leads to the consideration
of a surface formed by the segment of the polar profile
Rp = aemh described on a vertical chord BE as shown in



Fig. 1. An equiangular spiral curve generated on vertical axis: (a) symmetrical half of an equiangular spiral and (b) symmetrical half of a polar surface.
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Fig. 1(b). The segment BGE represents the half of the tube
surface with chord BE as the axis of symmetry. The surface,
thus described, may be termed as a �polar surface�, for
convenience.

Condensation phenomenon in such a situation can be
effectively modeled by invoking fundamental conservation
equations for mass, momentum and the condensable
species, with suitable interfacial boundary conditions.
However, certain simplifying assumptions are made, by
appealing to the physical nature of the problem being ad-
dressed, as follows:

1. The condensed liquid film formed on the tube surface is
thin enough so that temperature distribution within the
same can be taken as linear.

2. The thin condensed film moves with a very low velocity
such that non-linear inertia terms in the momentum con-
servation equation can be neglected, i.e., the film Rey-
nolds number is very low.

3. The liquid phase flow is incompressible and laminar.
4. Thermodynamic equilibrium prevails at the liquid–

vapour interface.
5. Vapour phase is otherwise stagnant except having only

radial flow velocity due to mass diffusion.
6. The wall surface temperature Tw is constant.
7. Film surface and wall surface have the same radius of

curvature Rc(h) at all angular locations.

For further description, we adopt of the following
coordinate system notations: �x1� coordinate for a direction
tangential to the tube surface, and �y1� coordinate corre-
sponding to a radial direction measured with respect to
the tube surface. The governing equation for linear
momentum conservation in the liquid phase, in that case,
can be written as

l
d2vx1
dy2

¼ �ðq� qvÞg cos
p
2
� tan�1m� h

� �
þ dpr

dx1
ð1Þ
1

where dpr/dx1 is the pressure gradient due to surface ten-
sion. The term pr can be described from a balance of sur-
face tension and pressure forces at the interface as

pr ¼
r
Rc

ð2Þ

where r is the surface tension coefficient and Rc is the local
radius of curvature. In polar coordinates, Rc can be de-
scribed as

Rc ¼
R2
p þ

dRp

dh

� �2
� �3=2

R2
p þ 2

dRp

dh

� �2

� Rp
d2Rp

dh2

� � ð3aÞ

The above can be utilized to calculate the surface tension
originated pressure gradient, by noting that

dpr
dx1

¼ � r

R2
c

� �
dRc

dh

� �
dh
dx1

� �
ð3bÞ

and

dx1
dh

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
p þ

dRp

dh

� �2
s

ð3cÞ

where Rp = aemh. With the help of above relationships, the
liquid phase momentum conservation equation can be
solved, in consistency with the following boundary
conditions:

vx1 ¼ 0 at y1 ¼ 0 and
dvx1
dy1

¼ 0 at y1 ¼ d

where d is the condensate film thickness. This leads to the
following velocity profile within the liquid film:

vx1 ¼
q� qvð Þg

l
y1 d� y1

2

� �

� cos p=2þ tan�1mþ h
� 	

þ rme�2mh

q� qvð Þga2 1þ m2ð Þ


 �
ð4Þ
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Next, we describe the continuity equation for the vapour
phase, as

o2vr
or2

þ 1

r
ovr
or

¼ 0 ð5Þ

which leads to the condition vr / 1/r. Now, assuming that
vr = vs(h) at r = aemh + d (liquid–vapour interface), and
noting that d � a, one can write,

vr ¼ vsðhÞaemh=r ð6Þ
Using this, one can describe the energy conservation equa-
tion in the vapour phase, as follows:

vsðhÞ
aemh

r
oT v

or
¼ av

o2T v

or2
þ 1

r
oT v

or
þ 1

r2
o2T v

oh2

� �
ð7Þ

where the subscript �v� refers to the vapour phase. Analo-
gously, the species conservation equation takes a form:

vsðhÞ
aemh

r
oC
or

¼ D
o2C
or2

þ 1

r
oC
or

þ 1

r2
o2C

oh2

� �
ð8Þ

where C is the mass fraction of the condensable. The
boundary conditions for the solution of Eqs. (7) and (8)
are as follows:

at r ¼ aemh; T v ¼ T si and C ¼ Csi

at r ¼ r1; T ¼ T1 and C ¼ C1

The value of r1 for the present computation has been ta-
ken as r1 = 10aemh which equals to the ten times of tube
radius at any angular location. A change in its value be-
yond this has a negligible influence (less than 2%) in the
field variables. It needs to be noted here that interfacial val-
ues of temperature and concentration are thermodynami-
cally linked through phase equilibrium conditions. This
can be written in two steps, by first expressing the vapour
pressure (pv) as a function of interfacial saturation temper-
ature (Tsi) and then, expressing the condensable mass frac-
tion at interface (Csi) in terms of the vapour pressure. Here,
we execute these two steps by utilizing pertinent close-
formed expressions [14], as

pv
ptotal

¼ exp
hfg;a
R

T si � T sa

T siT sa

� �
� 0:38

T c

ln
T si

T sa




� 0:118

T 2
c

fT si � T sag
�

ð9Þ

where hfg,a is the latent heat of condensation of steam at a
reference temperature Tsa, Tc is the critical temperature of
water, and ptotal is the total pressure of the mixture. The
corresponding interfacial mass fraction of condensables
can then be calculated as [14]:

Csi ¼
1

1þ Mair

Mwater

ptotal
pv

� 1
� � ð10Þ

The radial velocity at liquid–vapour interface, vs, can be
expressed from consideration of impermeability of the
interface to non-condensable species, as
vs ¼
�D oC

or

��
r¼aemhþd

1� Csi

ð11Þ

Eq. (11) originates from a physical consideration that the
non-condensable gas is transported from the bulk to the
interface by a convective flow, which carries the condens-
able water vapour as well. Since the interface is imperme-
able to the non-condensable gas, it must be removed at
the same rate at which it arrives at the interface, in order
to maintain steady-sate conditions. This removal is accom-
plished by a diffusive flow back to the bulk, leading to an
interfacial concentration gradient.

Finally, with all the above information, we invoke the
mass conservation principle, applied to a differential con-
trol volume within the liquid film, as

_mx1þdx1 ¼ _mx1 þ _mc dx1 ð12Þ

where _mc is the rate of condensation. The above can be sim-
plified by invoking Taylor series expansions to obtain:

d

dx1

Z d

0

qvx1 dy1


 �
¼ _mc ð13Þ

Again, _mc can be described as

_mc ¼ k
T si � T w

dhfg
� kv
hfg

oT v

or

����
interface

ð14Þ

where hfg is a function of local interfacial temperature, and
Tw is the tube surface temperature. Here we use the follow-
ing variation of hfg:

hfg ¼ hfg;a
T c � T si

T c � T sa


 �
ð15Þ

Eq. (13) can be simplified with the aid of Eqs. (4) and (14)
to yield an ordinary differential equation of the form:

dv
dh

¼ A
v1=3

f ðhÞ½ �1=3 þ B ð16Þ

where

A ¼ �3lakðT si � T wÞ
qðq� qvÞghfg

ð16aÞ

B ¼
3lakvoTor

��
r¼aemhþd

q q� qvð Þghfg
ð16bÞ

f ðhÞ ¼ cos p=2þ tan�1mþ h
� 	

þ rme�2mh

ðq� qvÞga2ð1þ m2Þ ð16cÞ

and

v ¼ d3f ðhÞ ð16dÞ
Eq. (16) can be numerically integrated to obtain the growth
of film thickness. To determine the initial value of k at
h = tan�1m we have to know the film thickness d at
h = tan�1m (the upper most point of the tube surface).
Since the condensate mass flow rate is zero at this location,
the initial film thickness is taken to be the same as that for



Fig. 2. Variation of local Nusselt number with x1/L, for a condensing
system that does not contain any non-condensable.
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the condensation of a pure vapour over the same polar
tube surface. Therefore, we have, following Dutta et al. [9],

dat h¼tan�1m ¼ d0 ¼
3M 1þ m2ð Þ

1
2emh

1� 2rm2e�2mtan�1m

q�qvð Þga2ð1þm2Þ

2
4

3
5

1=4

Hence

kat h¼tan�1m ¼ k0 ¼ d30f ðtan�1mÞ ð16eÞ
It has also been observed that any value of k0 close to the
value given by Eq. (16e) makes a negligible influence in the
solution of d as a function of h. It can be noted here that
the values of interfacial temperature and concentration
are not known a priori. These values are obtained by an
iterative updation of the field variables, through numerical
solution of Eqs. (7) and (8). This is done by assuming first a
logical guess value of Csi which may correspond to a value
less than C1 and the corresponding value of Tsi satisfying
Eqs. (9) and (10). Then the values of Csi and Tsi are contin-
uously updated through repeated numerical solutions of
Eqs. (7) and (8), satisfying simultaneously Eqs. (14) and
(16) and an additional equation _mc ¼ qgV s for the use of
Eq. (16) to update the value of Tsi. Thus the converged
values of Csi, Tsi and field variables are finally obtained.

The variation of film thickness, as determined as Eq.
(16) can be subsequently utilized to estimate the heat trans-
fer coefficients, and hence, the Nusselt number. The overall
heat transfer coefficient (h), by convention, is defined by the
following:

q00 ¼ kðT si � T wÞ
d

¼ hðT1 � T wÞ ð17Þ

The condensation heat transfer coefficient (hc) can be de-
scribed as

hc ¼
_mchfg

T1 � T sið Þ ð18Þ

The overall heat transfer coefficient (h) is also related to the
film heat transfer coefficient (hf) and gas phase heat transfer
coefficient (hg) and the condensation heat transfer coeffi-
cient (hc) by the following:

1

h
¼ 1

hf
þ 1

hc þ hg
ð19Þ

where

hf ¼
kðT si � T wÞ
dðT si � T wÞ

¼ k
d

ð19aÞ

hg ¼
�kv oT v

or

� 	�� ��
T1 � T sið Þ ð19bÞ

The Nusselt number, Nu, is defined on the basis of overall
heat transfer coefficient, h, as

Nu ¼ hð2RÞ
k

ð20Þ

where R is the radius of an equivalent circular tube which
has the same surface area as that of the polar surface under
consideration. It can be written, following Dutta et al. [9]
that

R ¼ að1þ m2Þ1=2

pm
eðp=2þ/Þm � em tan�1m

� �
ð21Þ

where the angle / is obtained from the following equation
[9]:

cos/ ¼ aem tan�1m sin tan�1mð Þ
aem p=2þ/ð Þ ð22Þ

The average Nusselt number can be calculated as

Nuav ¼
R /
tan�1m Nuae

mh dhR /
tan�1m ae

mh dh
ð23Þ
3. Results and discussion

It has been established earlier by Dutta et al. [9] that the
pertinent dimensionless parameters influencing the Nusselt
number in condensation of pure vapour over a polar tube
surface are (Ra/Ja)1/4, m and Nr. For the purpose of con-
tinuity and completeness, Fig. 2 is drawn after Dutta et al.
[9] to show the variations of local Nusselt number for a
polar surface with m = 1 and that for a circular tube sur-
face (m = 0) whose surface area is same as that of a polar
tube surface with m = 1. These results are in excellent
accordance with the predictions reported in Dutta et al. [9].

Fig. 3 depicts the variations of local Nusselt number
along the tube surface for different mass fractions of non-
condensable species in the bulk mixture at free stream (ex-
pressed in percentage) conditions. It is observed that the
presence of even a marginal amount of non-condensable
species reduces the Nusselt number considerably. The vari-
ations in overall heat transfer coefficient (h) based average
Nusselt number (Nu) and condensation heat transfer



Fig. 3. Variation of local Nusselt number with x1/L, corresponding to
different percentage of non-condensables, with m = 1.

Fig. 4. Variation of average Nusselt number, with mass fraction of non-
condensables, for m = 1.

Fig. 5. Variation of temperature and mass fraction of the condensable
within the gaseous (vapour + non-condensable) phase, in a direction
normal to the interface, at h = p/2.

Fig. 6. Variation of ratio of average Nusselt number with and without
condensables, as a function of mass fraction of non-condensables, for
different values of m.
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coefficient (hc) based average Nusselt number (Nuc) with
concentration of non-condensable species are shown in
Fig. 4. There is a drastic reduction in both the Nusselt
numbers with an increase in amount of non-condensable
species. The value of Nuc is always higher than that of
Nu. This is because of the fact that the condensation heat
transfer coefficient is defined on the basis of a temperature
difference of (T1 � Tsi) (refer to Eq. (18)), which is much
lower than the temperature difference of (T1 � Tw) on
the basis of which the overall heat transfer coefficient, h,
is defined (refer to Eq. (17)). This reduction in heat transfer
coefficient can be attributed to the fact that the condens-
able vapour has to diffuse through a body of vapour–gas
mixture to the interface, because of which, there occurs a
considerable drop in vapour concentration and tempera-
ture from their free stream values to the corresponding
interfacial values, as shown in Fig. 5. This results in a
reduction in the rate of condensation and finally in the
overall heat transfer coefficient.

Fig. 6 depicts the most important feature of the present
work. An enhancement in heat transfer coefficient for a
polar tube surface with respect to a circular tube, due to
aiding effective gravity forces and surface tension driven
favourable pressure gradients, has already been established
in the literature [9], where it has also been recognized that
the heat transfer coefficient increases with an increase in
value of m, with other significant parameters (Ra, Ja and
Nr) remaining the same. What has been missing in the
literature, however, is any systematic study exploring a
possible utilization of this heat transfer augmentation
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capability to arrest a drastic reduction in the condensation
heat transfer rate that otherwise would occur in presence of
non-condensables. Fig. 6 shows the variations in the ratio
of average Nusselt number with non-condensable species
(Nuav,with) to that without non-condensable species
(Nuav,without), against mass fraction of non-condensable
species. It is observed that the above ratio increases with
an increase in value of m, for the same mass fraction of
non-condensable species. This implies physically that for
a polar tube surface, with an increase in m, the enhance-
ment in heat transfer coefficient in presence of non-
condensable species is more than the corresponding
proportional enhancement in the same in absence any
non-condensable species. This additional gain suggests an
advantage in use of polar tube surfaces with higher values
of m, more specifically for condensation of a vapour in
presence of non-condensable gases, obviously within the
constraints imposed by tube manufacturing processes.

4. Conclusions

From the present study, following major conclusions
can be drawn:

• Heat transfer coefficient in film condensation in presence
of non-condensable species over non-circular tube sur-
faces with progressively increasing radius of curvature
in the direction of gravity has been theoretically investi-
gated. A polar surface comprising a segment of an equi-
angular spiral curve, generated symmetrically on a
vertical chord, has been considered.

• The average Nusselt number for a polar surface is
always higher than that corresponding to a circular
one of the same surface area, due to an effective gravity
force component and favourable surface tension driven
pressure gradients acting on the liquid film. On the other
hand, the presence of a marginal amount of non-
condensable species reduces drastically the average Nus-
selt number from its value corresponding to a pure
vapour (devoid of any non-condensable species).

• An increase in value of m (the parameter defining the
equiangular spiral curve) increases the average Nusselt
number, Nuav, for a polar surface. With an increase in
m, the enhancement in Nuav for a polar surface over that
for a circular surface, in case of condensation with
the presence of non-condensable species, is more
pronounced than the corresponding proportional
enhancement in Nuav without the presence of any non-
condensable species.
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